Quantitative Aptitude рдкреНрд░рд╢реНрди рдФрд░ рдЙрддреНрддрд░ рдХрд╛ рдЕрднреНрдпрд╛рд╕ рдХрд░реЗрдВ
рдкреНрд░: A shopkeeper has a job to print certain number of documents and there are three machines P, Q and R for this job. P can complete the job in 3 days, Q can complete the job in 4 days and R can complete the job in 6 days. How many days the shopkeeper will it take to complete the job if all the machines are used simultaneously ? 2388 05b5cc758e4d2b4197774fbf4
5b5cc758e4d2b4197774fbf4- 14/3 daystrue
- 22 daysfalse
- 33/2 daysfalse
- 44 daysfalse
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 1. "4/3 days"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: A) 4/3 days Explanation: Let the total number of documents to be printed be 12. ┬аThe number of documents printed by P in 1 day = 4. ┬аThe number of documents printed by Q in 1 day = 3. ┬аThe number of documents printed by R in 1 day = 2. ┬аThus, the total number of documents that can be printed by all the machines working simultaneously in a single day = 9. ┬а Therefore, the number of days taken to complete the whole work = 12/9 = 4/3 days.
рдкреНрд░: Twelve children take sixteen days to complete a work which can be completed by 8 adults in 12 days. After working for 3 days, sixteen adults left and six adults and four children joined them. How many days will they take to complete the remaining work ? 1648 05b5cc758e4d2b4197774fbf9
5b5cc758e4d2b4197774fbf9- 13 daysfalse
- 22 daysfalse
- 36 daystrue
- 412 daysfalse
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 3. "6 days"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: C) 6 days Explanation: From the given data, 12 children 16 days work,One childтАЩs one day work = 1/192. 8 adults 12 days work,One adultтАЩs one dayтАЩs work = 1/96. Work done in 3 days = ((1/96) x 16 x 3) = 1/2 Remaining work = 1 тАУ 1/2 = 1/2 (6 adults+ 4 children)тАЩs 1 dayтАЩs work = 6/96 + 4/192 = 1/12 1/12 work is done by them in 1 day. 1/2 work is done by them in 12 x (1/2) = 6 days.
рдкреНрд░: How many parallelograms will be formed if 7 parallel horizontal lines intersect 6 parallel vertical lines? 3044 05b5cc754e4d2b4197774fbb4
5b5cc754e4d2b4197774fbb4- 1215false
- 2315true
- 3415false
- 4115false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 2. "315"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: B) 315 Explanation: Parallelograms are formed when any two pairs of parallel lines (where each pair is not parallel to the other pair) intersect. ┬а Hence, the given problem can be considered as selecting pairs of lines from the given 2 sets of parallel lines. ┬а Therefore, the total number of parallelograms formed = 7C2 x 6C2 = 315
рдкреНрд░: A polygon has 44 diagonals, then the number of its sides are ? 1510 05b5cc754e4d2b4197774fbb9
5b5cc754e4d2b4197774fbb9- 113false
- 29false
- 311true
- 47false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 3. "11"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: C) 11 Explanation: Let the number of sides be n.┬а The number of diagonals is given by┬аnC2┬а- n┬а┬а Therefore, nC2 - n = 44, n>0┬а nC2┬а- n┬а= 44 n2┬а- 3n - 88 = 0┬а n2 -11n + 8n - 88 = 0┬а┬а n(n - 11) + 8(n - 11) = 0┬а n = -8 or n = 11. ┬а As n>0, n will not be -8. Therefore, n=11.
рдкреНрд░: There are three rooms in a Hotel: one single, one double and one for four persons. How many ways are there to house seven persons in these rooms ? 4246 05b5cc754e4d2b4197774fbaf
5b5cc754e4d2b4197774fbaf- 1105true
- 27! x 6!false
- 37!/5!false
- 4420false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 1. "105"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: A) 105 Explanation: Choose 1 person for the single room & from the remaining choose 2 for the double room & from the remaining choose 4 people for the four person room,┬а ┬аThen, 7C1 x 6C2 x 4C4┬а = 7 x 15 x 1 = 105
рдкреНрд░: Find the sum to 200 terms of the series 2 + 5 + 7 + 6 + 12 + 7 + .... 1489 05b5cc754e4d2b4197774fb9f
5b5cc754e4d2b4197774fb9f- 130,400true
- 230,200false
- 334,600false
- 438,400false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 1. "30,400"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: A) 30,400 Explanation: we can treat every two consecutive terms as one.So, we will have a total of 100 terms of the nature:(2 + 5) + (7 + 6) + (12 + 7).... => 7, 13, 19,.... ┬а We know the sum of n terms┬а┬аnn+12 ┬а Now, a= 7, d=6 and n=100Hence the sum of the given series is S= 100/2 x[2 x 7 + 99 x 6]=> 50[608]=> 30,400.
рдкреНрд░: "I am five times as old as you were, when I was as old as you are", said a man to his son. Find out their present ages, if the sum of their ages is 64 years ? 11775 05b5cc754e4d2b4197774fba4
5b5cc754e4d2b4197774fba4- 1Father = 50; Son =14false
- 2Father = 40; Son =24true
- 3Father = 60; Son =4false
- 4Father = 48; Son =16false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 2. "Father = 40; Son =24"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: B) Father = 40; Son =24 Explanation: Let the present age of the man be 'P' and son be 'Q',Given, P + Q = 64 or Q = (64 - P)Now the man says "I am five times as old as you were, when I was as old as you are",So, P = 5[B - (P - Q)]We get 6P = 10Q,Substitute value for Q,6P = 10(64 - P),Therefore P = 40, Q = 24.
рдкреНрд░: A six-digit number is formed by repeating a three-digit number; for example, 404404 or 415415 etc. Any number of this form is always exactly divisible by 1643 05b5cc754e4d2b4197774fb95
5b5cc754e4d2b4197774fb95- 1101false
- 2901false
- 31001true
- 4789false
- рдЙрддреНрддрд░ рджреЗрдЦреЗрдВрдЙрддреНрддрд░ рдЫрд┐рдкрд╛рдПрдВ
- Workspace
- SingleChoice
рдЙрддреНрддрд░ : 3. "1001"
рд╡реНрдпрд╛рдЦреНрдпрд╛ :
Answer: C) 1001 Explanation: Here by trial and error method, we can obseve that 404404 = 404 x 1001; 415415 = 415 x 1001, etc. So, any number of this form is divisible by 1001.

